- [1] P. Takyi-Aninakwa, S. Wang, G. Liu, C. Fernandez, W. Kang, and Y .Song,(2025) “Deep learning framework designed for high-performance lithium-ion batteries state monitoring" Renewable and Sustainable Energy Re views 218: 115803. DOI: 10.1016/j.rser.2025.115803.
- [2] H. Yu, X. Zhang, Y. Wang, M. Li, W. Chen, Z. Hu, M. Zhu, and Y. Huang, (2025) “Activation and Stabilization Strategies of Aluminum Metal Anode Toward High Performance Aqueous Al Metal Batteries" Advanced Materials: 2507164. DOI: 10.1002/adma.202507164.
- [3] E. Ratchai, M. Luengchavanon, K.-a. Techato, W. Lim but, N. Y. Voo, and S. Narkgrom,(2024)“AMicrowave assisted Solid-state Method With Chitin (Shrimp Shell Waste) UsedToSynthesize Cathode Materials For Lithium Iron Phosphate Batteries" Journal of Applied Science and Engineering 27(3): 2159–2168. DOI: 10.6180/jase.202403_27(3).0002.
- [4] S. Xia, X. Xu, W. Wu, Y. Chen, L. Liu, G. Wang, L. Fu, Q. Zhang, T. Wang, J. He, et al., (2025) “Advancements in functionalized high-performance separators for lithium sulfur batteries" Materials Science and Engineering: R: Reports 163: 100924. DOI: 10.1016/j.mser.2025.100924.
- [5] M. Ahwiadi and W. Wang, (2025) “Battery health monitoring and remaining useful life prediction techniques: A review of technologies" Batteries 11(1): 31. DOI: 10.3390/batteries11010031.
- [6] A. A. Laghari, H. Li, A. A. Khan, Y. Shoulin, S. Karim, and M. A. K. Khani, (2024) “Internet of Things (IoT) applications security trends and challenges" Discover Internet of Things 4(1): 36. DOI: 10.1007/s43926-024-00090-5.
- [7] S. Wang, R. Zhou, Y. Ren, M. Jiao, H. Liu, and C. Lian, (2025) “Advanced data-driven techniques in AI for predicting lithium-ion battery remaining useful life: a comprehensive review" Green Chemical Engineering 6(2): 139–153. DOI: 10.1016/j.gce.2024.09.001.
- [8] W.Huang,T.Zhou,J.Ma,andX.Chen,(2025)“Anen semble model based on fusion of multiple machine learning algorithms for remaining useful life prediction of lithium battery in electric vehicles" Innovations in Applied Engineering and Technology: 1–12. DOI: 10.62836/iaet.v4i1.319.
- [9] L. Yang, M. He, Y. Ren, B. Gao, and H. Qi, (2025) “Physics-informed neural network for co-estimation of state of health, remaining useful life, and short-term degradation path in Lithium-ion batteries" Applied Energy 398: 126427. DOI: 10.1016/j.apenergy.2025.126427.
- [10] F. Jiang, X. Hou, and M. Xia, (2025) “Spatio-temporal attention-based hidden physics-informed neural network for remaining useful life prediction" Advanced Engineering Informatics 63: 102958. DOI: 10.1016/j.aei.2024.102958.
- [11] R. Khelif, B. Chebel-Morello, S. Malinowski, E. Laajili, F. Fnaiech, and N. Zerhouni, (2016) “Direct remaining useful life estimation based on support vector regression" IEEE Transactions on industrial electronics 64(3): 2276–2285. DOI: 10.1109/TIE.2016.2623260.
- [12] J. Liu and Z. Chen, (2019) “Remaining useful life pre diction of lithium-ion batteries based on health indicator and Gaussian process regression model" Ieee Access 7: 39474–39484. DOI: 10.1109/ACCESS.2019.2905740.
- [13] K. Qian, Y. Li, Q. Zou, K. Cao, and Z. Li, (2025) “SOH and RUL Estimation for Lithium-Ion Batteries Based on Partial Charging Curve Features" Energies 18(13): 3248. DOI: 10.3390/en18133248.
- [14] R.-J. Kuo, S. L. Huang, F. E. Zulvia, and T. W. Liao, (2018) “Artificial bee colony-based support vector ma chines with feature selection and parameter optimization for rule extraction" Knowledge and Information Systems 55(1): 253–274. DOI: 10.1007/s10115-017-1083-8.
- [15] W. N. Ismail, M. M. Hassan, H. A. Alsalamah, and G. Fortino, (2020) “CNN-based health model for regular health factors analysis in internet-of-medical things environment" IEEE Access 8: 52541–52549. DOI: 10.1109/ACCESS.2020.2980938.
- [16] J. Liu, R. Hao, Q. Liu, and W. Guo, (2023) “Prediction of remaining useful life of rolling element bearings based on LSTM and exponential model "International Journal of Machine Learning and Cybernetics 14(4): 1567 1578. DOI: 10.1007/s13042-023-01807-8.
- [17] J. Liang, H. Liu, and N.-C. Xiao, (2024) “A hybrid approach based on deep neural network and double exponential model for remaining useful life prediction" Ex pert Systems with Applications 249: 123563. DOI: 10.1016/j.eswa.2024.123563.
- [18] S. Li, Z. Chen, Q. Liu, W. Shi, and K. Li, (2020) “Modeling and analysis of performance degradation data for reliability assessment: A review" IEEE Access 8: 74648 74678. DOI: 10.1109/ACCESS.2020.2987332.
- [19] X. Cong, C. Zhang, J. Jiang, W. Zhang, and Y. Jiang, (2020) “A hybrid method for the prediction of the remaining useful life of lithium-ion batteries with accelerated capacity degradation" IEEE Transactions on Vehicular Technology 69(11): 12775–12785. DOI: 10.1109/TVT.2020.3024019.
- [20] Z. Fang, A. Gupta, and M. Khammash, (2023) “Con vergence of regularized particle filters for stochastic reaction networks" SIAM Journal on Numerical Analysis 61(2): 399–430. DOI: 10.1137/21M1453025.
- [21] S. Yin, H. Li, A. A. Laghari, L. Teng, T. R. Gadekallu, and A. Almadhor, (2024) “FLSN-MVO: edge computing and privacy protection based on federated learning Siamese network with multi-verse optimization algorithm for industry 5.0" IEEE Open Journal of the Communications Society: DOI: 10.1109/OJCOMS.2024. 3520562.
- [22] S. Yin, H. Li, A. A. Laghari, T. R. Gadekallu, G. A. Sampedro, and A. Almadhor, (2024) “An anomaly detection model based on deep auto-encoder and capsule graph convolution via sparrow search algorithm in 6G In ternet of Everything" IEEE Internet of Things Journal 11(18): 29402–29411. DOI: 10.1109/JIOT.2024.3353337.